
Andrew Wilcox on Software

View this article in Markdown • View this article on the web

A Surprisingly Insidious Bug Reading Text in Chunks
Using buffer.toString() on Node streams can silently corrupt UTF-8 when multibyte
chars split across chunks… this can be hard to test, and even harder to reproduce.

We need our system to read a file from the Internet. It’s a plain text file (nothing
could be simpler!), and then we need to parse, convert, summarize, normalize,
reconcile, tabulate, save, transmit, spindle, mutilate, and/or otherwise process
the file (which we think is going to be the hard part…)

We happen to be using Node, so I write a line or two of code in Node to fire off
a network connection to go grab the file.

Now, we don’t always or even usually want to read the whole file into memory
all at once. The file might be large, and we could run out of memory loading
the whole thing. The data might arrive slowly, and so we might want to process
the data as it comes in instead of waiting until everything arrives to do
anything.

Thus the usual Node approach to do is to get the data in chunks. The chunks
are small enough to easily fit in memory, and we can process the chunks one
at a time.

So, when I fire off my network connection, Node hands me chunks of the file as
they arrive. Since the file is supposed to be a text file, I could have set the
option when opening the connection to have Node process the file as text for
me. That’s the right way to do it. Node will do the conversion correctly if we ask
it to. You can stop reading now!

Node doesn’t do this by default because the file could be anything: it could be a
PDF, a Word document, an executable program… Thus the default without
setting the encoding is that the chunks arrive as what Node calls a “buffer”, a
purely binary chuck of bytes.

https://new.wilcoxsoftware.com/
https://new.wilcoxsoftware.com/text_chunk_bug.md
https://new.wilcoxsoftware.com/text_chunk_bug

Maybe I didn’t notice the option to set the encoding in the voluminous API
documentation; maybe I’ve written code to open network connections
thousands of times before and I don’t stop to think that this time I could set the
encoding; maybe I’m using a library that doesn’t have an option to pass
through the setting through to Node. Whatever the reason, now Node is
handing me binary buffers.

My next step (I think) is to decode the buffer as plain text and get it into a
string. I go reading the Node documentation for buffers, and there’s a zillion
methods, ah, but look, great, there’s a “toString”.

Or, these days, I might ask my favorite AI LLM model, “How do I convert a Node
Buffer into a string?" Answer: "In Node.js, a Buffer is raw bytes. To turn it into a
JavaScript string, use buffer.toString()”. (This is the correct answer to the wrong
question!)

stream.on('data', function (buffer) {
 process(buffer.toString()); // BUG!
}

Buffers contain bytes. A single byte isn’t large enough to represent all the
characters of all the languages of the world. (Not to mention emojis!) Many
characters need more than one byte. So what happens if one of these
multibyte characters juuuust happens to straddle two buffers? Now we’ve got
just part of a character in the buffer. We can’t successfully decode half a
character.

Whoops.

I’ve written code with this bug. I’ve seen published code with this bug. I once
asked an AI code agent to write a program to do some complex parsing and
processing and it absolutely nailed it. Every complex conversion I asked it to
do, it did correctly. But it started off by reading the text file… and oh look, it too
has the multibyte character split across buffers bug.

This part isn’t surprising. So far, this is just the ordinary kind of bug that
appears in code all this time. I write code that has bugs, other people write
code that has bugs, AI writes code with bugs.

For what makes this bug insidious, we need the rest of the story.

Testing

After I write some code, I try it out. I point it to a text file on the Internet and
see what I get. The same text I see when I look at the file myself. Good.

I could also write unit tests. As with all testing, there’s a cost/benefit analysis
involved. Writing unit tests cost engineering time. Not all unit tests are equal.
It’s unfortunately easy to write thousands of useless unit tests that all pass but
don’t test anything important and so don’t guard against the kind of bugs that
we actually encounter in production. For any particular set of unit tests we
could write, we have to weigh the cost of writing and maintaining them
compared the value of how much protection we expect them to give us against
important bugs.

And honestly, this one line of code is so simple I probably wouldn’t write tests
for it. If I were aware of the multibyte character split across buffers bug I would
definitely want to write a test for that. But if I were aware of the bug I wouldn’t
have written this code in the first place.

Let’s say for the sake of argument I write tests. What sort of tests might I write?
Well, what if we point the code at an empty file? A small file that entirely fits in
one buffer? A medium sized file that fits in two buffers? A large file that needs
many buffers?

Node will provide us a buffer with whatever data is available. Which might be a
small buffer for a slow connection. Or a large buffer on a fast connection. So we
want to test not only small and large files but also small and large buffers.

The usual sizes for most buffers are powers of two: 1K, 2K, 4K, 16K, 32K, 64K…
which are all an even number of bytes, but what if we got a buffer with an odd

number of bytes? Would our code still work then?

And there are characters. There are simple characters, basic Unicode
characters, complex Unicode characters, and super-duper really complex
Unicode characters like the Sanskrit ka with virama forming kṣa, with udātta
and candrabindu.

A single character in Sanskrit:

अ॒ग्निं॑

Given a particular set of unit tests running against a particular piece of code,
how much additional confidence do those tests give us that the code is
correct? For some kinds of code… concurrent code… indeterminate code…
situations where the source code has been hacked to inject security
vulnerabilities… the answer can be “little to none.”

However I’d expect unit tests to be useful for this code.

Of course, no amount of unit testing ever proves that code is correct. Yet we
can still develop degrees of confidence in how likely we think that the code is
correct. Low. Medium. High.

For this example with apparently comprehensive tests against some really
simple code, I have as high a degree of confidence in the correctness of this
code as I ever do for any typical commerically written code. Not to the
standards required for medical devices or aviation code that might kill
someone, but to what I usually see for code where if the site goes down it
could cost the company millions of dollars.

What is different… unusual… strange… about this situation that my usual “best
practices” fail so badly?

For that, we need a bit of history.

History

In the earliest days of computers, characters were encoded with six bits. This
was enough to represent the uppercase letters, the digits, and a few
punctuation characters. To be clear, these were the uppercase English letters.
This will become important shortly.

Technology marched on, and eventually we were able to use seven bits per
character. This was large enough to include the lowercase English letters, and
all the punctuation characters commonly found on typewriters! This encoding
was called “ASCII”, and we still use it today.

Other countries with non-English languages had their own, different encodings.

Fast-forward a couple of decades, we came to the point where we could use
multiple bytes for characters. This is enough to include all the world’s
languages, and Unicode was born. And we got emojis.

By now all computers were using 8 bit bytes. If we’re using ASCII, how do we
pack a 7 bit ASCII character into an 8 bit byte? Easy. Set the top bit to zero, and
use the remaining 7 bits for the character.

The Unicode folks realized something clever. A modern file with 8-bit bytes
containing only ASCII characters will have every top bit of every byte set to
zero.

They came up with a Unicode encoding called “UTF-8” where if the top bit was
zero, it encoded exactly the same character that ASCII did. And if it was one, this
indicated a multibyte character for all of the other world languages.

This meant that if you were considering adapting Unicode and using UTF-8, all
of your ASCII files still worked! Exactly as they were! No conversion! Every ASCII
file in the world is also a UTF-8 file.

Now, my own keyboard is a US standard keyboard. If you look at the characters
printed on the keycaps themselves, the ones that I can type by pressing one
key or “Shift” and one key, those are all ASCII characters. That’s not true for
other countries. ASCII was a US standard for the English and punctuation
characters used in the US.

I can of course type or generate other characters by pressing some more
complex “Fn-Control-Option blah blah blah” keyboard chord or by copying and
pasting. For what I write in English and what I can type easily, in UTF-8 these
are all single byte characters because they came from ASCII.

A single byte character will never trigger the multibyte character split across
buffers bug.

And, yes, I tested a bunch of different non-English characters in my unit tests.
But I wasn’t thinking about “single byte characters” vs. “multibyte characters”. I
was thinking about “English characters and non-English characters”. To catch
the bug with a test, we need a non-English or other non-ASCII character and to
have it positioned right at the chunk boundary to trigger the bug.

So now we have an unpleasant, difficult, and painful bug.

This however doesn’t yet quite rise to the level of insidious…

The Outcome

My code goes into production, and at some point it loads a file with a multibyte
character which straddles two chunks.

What happens next?

I can imagine a scenario that goes like this: the UTF-8 decoder hits the invalid
character and throws an exception. The production error triggers an alarm so I
go check the logs. I see that the original file contained correct UTF-8 and so we
must have a decoding problem somewhere in our software. I fix the bug,
restart processing, and the customer’s file goes through.

Well, no.

That’s not what happens.

You see, Unicode has a non-character called the “replacement character”.

If you happen to be viewing this article on the web and it isn’t being blocked by
your browser etc., you might be able to see one right here at the end of this
sentence: �

If that didn’t show up, here’s an image:

If a UTF-8 decoder encounters a byte that’s invalid for UTF-8, it’s replaced by this
“question mark in a black diamond” symbol.

There are many files out there which contain mostly ASCII, 99.9% ASCII, 99.99%
ASCII, but have a few characters from one of the other hundreds of non-English
encodings used before Unicode.

The UTF-8 decoder doesn’t throw away the entire file just because it couldn’t
decode one or two characters.

If we open a file and we see gibberish with black diamonds and question
marks all over the place, clearly something is wrong. But seeing the occasional
replacement character? That’s normal.

Unless we happen to know that the original file didn’t contain any replacement
characters, a file with a replacement character or two looks like an ordinary
UTF-8 file. Some UTF-8 files contain a few replacement characters.

When might we see the bug? Depending on the Node version, how fast Node is
loading the file, and so on, the chunk size might be end up being something
like 64K. In the Markdown file containing the source for this article, we’re only
up to 11K right here. This file would need to be a lot longer for you to even
have a chance of seeing corruption.

And, of course, the bug would only be triggered if there happened to be a
multibyte character right at the chunk boundary.

Meanwhile chunks don’t have a fixed size. Node provides what data is available.
On a slower or faster connections, this could be a small chunk, a large chunk,

or anything in between.

A customer complains that we corrupted their file. We try loading their file
ourselves. We get a different chunk size, the chunk boundary happens not to
hit a multibyte character, and so no corruption. The customer tries again,
different chunk size, no corruption. We close the bug as “not reproducible”.

To summarize, we have a bug which:

Is present in simple code that looks like it would be hard to get wrong… if
we’re not already aware of the bug.

Can easily pass unit tests written to a high degree of comprehensiveness…
again if if we’re not already aware of the bug.

Is triggered very rarely.

Doesn’t reproduce, unless we get particularly lucky.

Corrupts customer’s data.

And, doesn’t look like corrupted data if we’re not comparing it to the
orignal.

Now that is an insidious bug.

Thank you for reading. Please email me at andrew@wilcoxsoftware.com if
there’s a technical topic you’d like to see written about, or if there’s something I
might be able to help you with on a contract basis.

mailto:andrew@wilcoxsoftware.com

